NASA Completes First Flight of Laminar Flow Scaled Wing Design

A white and blue NASA F-15 research jet climbs to altitude with an approximately 3-foot experimental wing design mounted beneath its fuselage. Viewed in profile against a blue sky with mountains in the distance, the test article resembles a ventral fin below the aircraft.

NASA completed the first flight test of a scale-model wing designed to improve laminar flow, reducing drag and lowering fuel costs for future commercial aircraft. 

The flight took place Jan. 29 at NASA’s Armstrong Flight Research Center in Edwards, California, using one of the agency’s F-15B research jets. The NASA-designed, 40-inch Crossflow Attenuated Natural Laminar Flow (CATNLF) wing model was attached to the aircraft’s underside vertically, like a fin. 

The flight lasted about 75 minutes, during which the team ensured the aircraft could maneuver safely in flight with the additional wing model. 

“It was incredible to see CATNLF fly after all of the hard work the team has put into preparing,” said Michelle Banchy, research principal investigator for CATNLF. “Finally seeing that F-15 take off and get CATNLF into the air made all that hard work worth it.” 

NASA designed the CATNLF technology to improve the smooth flow of air, known as laminar flow, over swept-back wings, used in everything from airliners to fighter jets, by reducing disruptions that lead to drag. Maintaining laminar flow could help lower fuel burn and costs. 

This flight was the first of up to 15 planned for the CATNLF series, which will test the design across a range of speeds, altitudes, and flight conditions. 

“First flight was primarily focused on envelope expansion,” Banchy said. “We needed to ensure safe dynamic behavior of the wing model during flight before we can proceed to research maneuvers.” 

During the flight, the team performed several maneuvers, such as turns, steady holds, and gentle pitch changes, at altitudes ranging from about 20,000 to nearly 34,000 feet, providing the first look at the aerodynamic characteristics of the wing model and confirming that it is working as expected. 

The team measured laminar flow using several tools, including an infrared camera mounted on the aircraft and aimed at the wing model to collect thermal data during flight tests. They will use this data to confirm key aspects of the design and evaluate how effectively the model maintains smooth airflow. 

“CATNLF technology opens the door to a practical approach to getting laminar flow on large, swept components, such as a wing or tail, which offer the greatest fuel burn reduction potential,” Banchy said.  

Early results showed airflow over the aircraft closely matched predictions made using computer models, she said. 

The first flight builds on earlier work accomplished through computer modeling, wind tunnel testing, ground tests, and high-speed taxi tests. NASA plans to continue flight tests to gather research data that will help further validate the CATNLF test article and its potential for future commercial aircraft designs. 

The CATNLF testing is a collaboration under NASA’s Flight Demonstrations and Capabilities project and Subsonic Vehicle Technologies and Tools project. The CATNLF concept has been supported through the combined efforts of NASA’s Advanced Air Vehicles Program and Integrated Aviation Systems Program under the agency’s Aeronautics Research Mission Directorate.

Source

Leave a Reply

Your email address will not be published. Required fields are marked *

Enable Notifications OK No thanks